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A B S T R A C T

Epidemiological models are dominated by compartmental models, of which SIR formulations are the most
commonly used. These formulations can be continuous or discrete (in either the state-variable values or time),
deterministic or stochastic, or spatially homogeneous or heterogeneous, the latter often embracing a network
formulation. Here we review the continuous and discrete deterministic and discrete stochastic formulations of
the SIR dynamical systems models, and we outline how they can be easily and rapidly constructed using
Numerus Model Builder, a graphically-driven coding platform. We also demonstrate how to extend these models
to a metapopulation setting using NMB network and mapping tools.

1. Introduction

In a comprehensive review of the mathematics of infectious disease,
Hethcote (2000) traces the development of systems of differential
equations used over the past 100 years to study disease processes. Once
the purview of mathematicians, physicist and engineers, dynamical
system formulations of epidemic processes are increasingly being used
by epidemiologists, ecologists and social scientists to study the potential
for disease pandemics to threaten the lives of humans, domesticated
animals and plants, and all organisms across the globe.

Underpinning all dynamical systems models of epidemiological
outbreaks and endemic disease are formulations based on the concept
of an SEIR progression (Fig. 1), whereby susceptible individuals in
disease class S enter disease class E on exposure to a pathogen (i.e.,
infected but not yet infectious themselves). Individuals in class E then
transfer, after a period of latency, into the class of infectious in-
dividuals, I, only to transfer to a recovered or removed class R. Once
mortality is included in the model (both natural and disease-induced)
the removed designator R becomes ambiguous because removed in-
dividuals now include both recovered and dead. Thus we prefer to use
the designator V for recovered (i.e., “V” for naturally vaccinated in-
dividuals that have “recovered with immunity”) and D for dead. This
SEIVD notation proves useful once SEIR process are elaborated to in-
clude birth, recruitment, immigration, death and emigration processes.

Beyond various demographic processes, particularly migration, as
discussed further in our metapopulation formulation, elaborations to
the SEIVD formulation variously include age-class (Castillo-Chavez

et al., 1989) and sex (Leclerc et al., 2009) structure, spatial structure
(Keeling, 1999; Balcan et al., 2010), and the genetic structure of hosts
and pathogens (Koelle et al., 2006; Gilchrist and Sasaki, 2002). Ad-
ditionally, stochastic formulations of epidemic models (Allen, 2017;
Britton, 2010) are becoming increasingly important. These are needed
to explore the inherent stochastic aspects of epidemics, such as prob-
abilities of fadeouts (versus breakouts) in the early stages of epidemics,
and risk analyses that are necessary for managing epidemics when the
ultimate size and length of outbreaks are uncertain.

Hethcote (2000) provided a comprehensive review of the funda-
mental deterministic dynamics of SEIR models and their elaboration to
include an M class (that is, individuals born with maternally provided
immunity that wears off over time), and elementary characterizations
of birth and death process. His results have been considerably extended
to elaborated SEIR models that include more complex characterizations
of births and of deaths, and some age-structure, with a strong focus in
the mathematics literature on the existence and stability of outbreak
and endemic equilibria (Li and Muldowney, 1995). Analyses of sto-
chastic SEIR models and elaborations, which from hereon we refer to as
SEIVD models, remain more challenging, though some analytical results
do exist. Most stochastic analyses, however, are computationally in-
tensive and the results numerical rather than analytical. In addition,
unlike deterministic SEIVD models which are readily fitted to data, it
remains a challenge to fit stochastic models to data, with new ap-
proaches involving concepts well beyond first courses in calculus or
linear algebra.

Given that a susceptible/infected class structure underpins all
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epidemiological models, whether deterministic, stochastic, or even
agent-based, a succinct, pedagogical review of such models is useful. In
particular a clear exposition of SEIVD models for the non-mathemati-
cian—by which we mean, scientists who have some understanding of
calculus, but do not have formal training in dynamical systems theory,
or the numerical techniques to competently build and implement
computational models. In addition, the literature lacks expository ar-
ticles that elucidate for biologists and social scientists the relationship
among continuous and discrete SEIVD models (but see Getz and Lloyd-
Smith, 2006), their stochastic elaborations in systems and agent-based
(i.e., individual-based) computational settings (Ajelli et al., 2010; Burke
et al., 2006), as well as extensions to metapopulation settings (Lloyd
and Jansen, 2004). These are lacunae, apart from agent-based models,
that we hope to fill with this paper, while at the same time providing
those scientists who are looking for fast, reliable ways to obtain and
modify code needed to address their epidemiological models with a
means to do so in the context of the Numerus Model Builder software
development platform.

At the end of this paper, we provide a list of links to online material
that are available to readers to facilitate use of the models described in
this primer. This includes a link to the Numerus Model Builder (NMB)
website where the reader can download a free version of the software
that will run the models made available with this primer. The website
also links to an instruction wiki and a number of training videos that the
user can view to start using NMB. These include: (1) Introduction to the
Numerus Model Builder Interface, (2) Simple Population Model, (3)
Logistic Population, and (4) Discrete Density-Dependent Growth. In
addition, we provide links to the six epidemiological models used in this
primer and to nine videos that discuss aspects of constructing and im-
plementing these models using NMB.

Finally, given the centrality of dynamic epidemic models to con-
tainment of outbreaks, policy formulation and response logistics,
modeling tools are needed that can be used by healthcare professionals
not trained in computational methods to carry out containment policy,

and response analyses. Thus, our strong focus is on how to apply NMB
to building basic epidemiological models and to demonstrate its use in
the context of epidemics that are spatially structured, such as the recent
outbreak of Ebola in West Africa (Kramer et al., 2016; Getz et al., 2015).

2. Homogeneous SEIVD formulations

2.1. Continuous deterministic models

SEIVD infectious disease models are based on dividing an otherwise
homogeneous population into the following disease classes: susceptible
(S), exposed (E; infected but not yet infectious), infectious (I), recovered
with immunity (V; which may wane over time) and dead (D; from both
natural and disease-induced mortality). Throughout, we use the roman
fonts S, E, I, V and D to name the classes themselves and the italic fonts
S, E, I, V and D to refer to the variables representing the number of
individuals in these corresponding classes. The assumption of homo-
geneity implies that age and sex structure are ignored. We incorporate
population spatial structure—as would be found in countries com-
prising of a network of cities, towns, and villages—into a metapopu-
lation framework (Fulford et al., 2002; Lloyd and Jansen, 2004), if we
assume that a set of homogeneous subpopulations can be organized into
a network of subpopulations, among which individuals move in a
fashion that reflects appropriate movement rates (e.g., propensity to
move as a function of age and sex (Getz et al., 2017)) and geographical
factors (e.g., distances, geographical barriers, desirability of possible
destinations).

If the time scales of the epidemic and movement processes among
subpopulations, including disease-induced mortality, are much faster
than the time scale of the background population demography (births,
recruitment, natural mortality and population level migration) then we
can ignore the demography; otherwise we cannot. For example, in the
case of influenza, epidemiological and local movement processes in-
volve noticeable changes at the scale of weeks, while demographic
changes in the underlying population itself (beyond epidemic disease-
induced death rates) are obvious only at the scale of years. In this case,
we can ignore natural births and deaths, and focus on epidemic pro-
cesses alone.

In the context of an epidemic occurring in a single homogeneous
population of size N at the start of the epidemic (i.e., at time t=0),
denote the per-capita susceptible (S) disease transmission rate (i.e.,
force of infection) by τ(I, N), which we assume depends on both the
number of infectious individuals I(t) and the total number of individuals
N(t) in the population. The form of this dependence is discussed in more
detail later. In addition, we denote per-capita rates of progression from
exposed (E) to infectious (I) and onto to removed with immunity (V)
using the symbols σ and γ respectively (Fig. 1). For generality, as de-
picted in Fig. 1A, we include a population net recruitment function λ(t),
where all these recruits are assumed to be susceptible. Later we gen-
eralize this in the context of a metapopulation structure and allow other
disease classes to migrate. We also include per-capita disease-induced
and natural mortality rates α and μ, respectively, that accumulate in
disease class D, as well as allow for the occurrence of a per-capita im-
munity-waning rate ν (Fig. 1). Some or all of this latter group of
parameters may be zero, and only become non-zero as the scope of the
analysis undertaken is enlarged. Also, as a starting point, all parameters
are assumed to be constant, except for the transmission function τ,
which at its most fundamental has the relatively simple “frequency-
dependent” structure (Getz and Pickering, 1983)

τ I N
βI
N

N S E I V( , ) , where= = + + + (1)

with the disease transmission parameter β itself constant over time. The
even simpler “density-dependent” form τ(I, N)= βI should be used with
caution, because at high population densities it is unduly unrealistic;
although at low population density it can be quite useful to generalize

Fig. 1. Flow diagrams for the basic SEIVD continuous (A) and discrete (B) time
models with transition rates τ, σ, γ and ν from disease classes S to E, E to I, I to V
and V back to S, respectively. In the continuous-time formulation, λ is the rate
at which new individuals are recruited to the susceptible population (births or
emigration), μ and α are natural and disease-induced mortality rates respec-
tively. In the discrete-time formulation, a competing rates approach is used to
derive transition proportions p, with identifying subscripts, as described in the
text. We note that Λ is the recruitment rate λ(t) integrated over one discrete
time unit to obtain the number of individuals recruited each step (see Eq. (11)).
We also note that τ is the well-known “force of infection,” which should not be
confused with the recruitment rate λ, since λ is often used in many presenta-
tions to represent the force of infection.
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τ(I, N) as being approximately density-dependent (e.g. see McCallum
et al., 2001 and the Discussion section below).

With the above notation, the basic continuous time differential
equation formulation of an SEIVD epidemic process in a homogeneous
population takes the form:

( )λ t νV τ I N μ S

τ I N S σ μ E

σE γ α μ I

γI ν μ V

( ) ( , )

( , ) ( )

( )

( )

dS
dt
dE
dt
dI
dt

dV
dt

= + − +

= − +

= − + +

= − + (2)

To complete the description, we need to include the relationship

N t S t E t I t V t( ) ( ) ( ) ( ) ( )= + + + (3)

We may also want to evaluate the number of deaths M(t) and D(t), due
respectively to natural and disease-induced causes that have accumu-
lated over the period [t− 1, t) using the equations

M t μN z

D t αI z

( ) ( )dz

( ) ( )dz
t

t

t
t

1

1

∫
∫

=

=
−

− (4)

The properties of Eq. (2) have been extensively studied over the past
three to four decades (Li and Muldowney, 1995; Hethcote, 2000; Li and
Wang, 2002; Getz and Lloyd-Smith, 2006), with the most important
results pertaining to both pathogen-invasion (i.e., disease-outbreak)
and pathogen-persistence (i.e., endemicity) conditions. This is in-
formally derived here for the case τ= βI/N, λ(t)= μN (i.e., individual
birth and death rates are the same) and ν=0 from the following con-
siderations. Each infectious individual infects susceptible individuals at
a rate βS/N (≈β when S≈N) over an infectious period that lasts on
average for a time 1/(γ+ α+ μ). However, only a proportion σ/(σ+ μ)
of infected individuals become infectious, due to natural and disease-
induced mortality rates while in state E. Thus the basic reproductive
number R0, which is the number of susceptible individuals that each
infectious individual is expected to infect at the onset of an epidemic, is
given by

R
βσ

σ μ γ μ α( )( )0 =
+ + + (5)

This derivation for the SEIVD model, in the context of density-depen-
dent transmission, can be found in Li and Wang (2002): it uses the the
so-called “next generation matrix” method (Heffernan et al., 2005; Van
den Driessche and Watmough, 2002; Diekmann and Heesterbeek, 2000)
to compute this result. Because an outbreak cannot occur unless
R0 > 1, Eq. (5) in turn implies that under outbreak conditions, the
following inequality applies:

β
σ μ γ μ α

σ
Outbreak threshold:

( )( )
>

+ + +
(6)

2.2. Numerus SEIVD continuous-time implementation

As an introduction to using Numerus Model Builder to code dyna-
mical systems models, we begin with the very simple population growth
model (known as the logistic model)

N
K

N NdN
dt

rN 1 (0) 0= ⎛
⎝

− ⎞
⎠

=
(7)

This equation can be thought of as a special case of Eqs. (1) and (2)
when S(0)=N0, E(0)= I(0)= R(0)= 0, and λ(t)= rN(t)(1−N(t)/K):
under these conditions, E(t) and I(t) remain zero and S(t)≡N(t) for all
t≥ 0.

In Video 1 at the supporting website, the reader can find a complete
construction of the logistic Eq. (7) using Numerus Model Builder, with
solutions generated for various values of r when K=1. We note that

there is no loss of generality in setting K=1 because it can be seen to
be a scaling constant that varies with the measurement units selected
for N. (Verify this by making the transformation x=N/K in Eq. (7).)

Using Numerus Model Builder to code up Eqs. (2)–(4), we obtain the
model illustrated in Fig. 2. We then run the model for the case λ(t)= μN
and τ= βI/N to explore the effect of β on solutions to Eq. (2) as it
increases from a value below the outbreak threshold (i.e. R0 < 1) to
one above the outbreak threshold (i.e. R0 > 1), as embodied in In-
equality (6). In particular, for the parameters listed in the caption to
Fig. 3, it follows from Eq. (5) that the threshold occurring at R0= 1
implies that β satisfies:

β1 0.372β0.3
(0.3 0.01)(0.3 0.01 0.05)

= ⇒ =
+ + +

The impact of β increasing from 0.35 to 0.40 is illustrated in Fig. 3A. In
this panel, we see that after an initial drop related to the fact that in-
dividuals entering E must first transition to I before they can begin to
infect individuals in S, the solution is declining for β=0.37, but ulti-
mately growing for β=0.38. In addition, as illustrated in Fig. 3B for
the case ν > 0, the effect of recycling individuals from the R class back
into the S class results a slightly higher peak-epidemic level. More
importantly, the rebound associated with the case ν=0 has been
greatly reduced and the prevalence remains higher through the waning
phase of the epidemic.

2.3. Discrete deterministic models

Discrete-time models, as represented by systems of difference
equations, are computationally more efficient than continuous-time
differential equation models, such as Eq. (2), because discrete time
models do not require numerically intensive integration. Further,

Fig. 2. A Numerus Model Builder representation of Eqs. (2)–(4), showing the
dynamic variables as green boxes with orange circle icons that represent the
differential equations of the system, and pink circles to represent input para-
meters or terms such as λ= μN or τ= βI/N. The grid represents an output table,
and the blue in-square zig-zag a graphing tool. See Video 2 at the supporting
website for more details.
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discrete models synchronize directly with periodically collected data.
These data may be: daily or weekly incidence rates in fast moving
epidemics, such as influenza, SARS, or Ebola; or monthly or annual
rates in slower moving epidemics such as HIV or TB. In long running
epidemics that have a seasonal component, such as TB (Fares, 2011),
the effects of seasonality can only be estimated from a model if in-
cidence rates are reported monthly or, at least, quarterly.

Discrete models present a sequencing conundrum regarding mu-
tually exclusive events (e.g., one cannot die from both disease and
natural causes in the same time step). For example, consider outflow
from the infectious class over time interval (t, t+1], as modeled in the
third equation in Eq. (2). If there are I(t) individuals in class I at time t
then, assuming no inflow, the total number of individuals still in class I
at time t+1 is obtained by integrating the equation

γ α μ I I tdI
dt

( ) , ( ) specified= − + +

over (t, t+1], i.e., over one unit of time, to obtain

I t I t e( 1) ( ) γ α μ( )+ = − + + (8)

Hence the proportion of individuals that leave the infectious class
over time (t, t+1] due to recovery at rate γ, dying from disease at a
rate α, and dying from natural causes at a rate μ is

p I t
I t

e1 ( 1)
( )

(1 )γ α μ
γ α μ( )= − + = −+ +

− + +
(9)

The way to allocate the proportions pγ|α+μ, pα|γ+μ, and pμ|γ+α of in-
dividuals leaving class I into those that respectively recover, die from
disease, and die from natural causes, using the “competing rates” for-
mulation, is (Andersen et al., 2012) (the symbol := indicates that these
are definitions)

p

p

:

:

γ α μ
γ e

γ α μ

α γ μ
α e

γ α μ

|
(1 )

|
(1 )

γ α μ

γ α μ

( )

( )

=

=

+
−

+ +

+
−

+ +

− + +

− + +

(10)

From this, and Eq. (9), it easily follows that

p p p pγ α μ α γ μ μ γ α γ α μ| | |+ + =+ + + + +

Using this notation in the context of the appropriate rates for each
equation and making the assumption that

Λ λ s τ τ I t N t( )ds and ( ( ), ( ))t t

t
t

1∫= =
+

(11)

are constants that apply over time interval (t, t+1], a discrete
equivalent of Eq. (2) takes the form

S t Λ p V t S t p
E t p S t E t p
I t p E t I t p

( 1) ( ) ( )(1 )
( 1) ( ) ( )(1 )
( 1) ( ) ( )(1 )

t ν μ τ μ

τ μ σ μ

σ μ γ α μ

|

|

|

t

t

+ = + + −
+ = + −
+ = + −

+

+

+ + (12)

We note that solutions to this discrete system will differ from solutions
to the continuous system, even for constant Λt, because τ(t) does not
remain constant over the interval (t, t+1] in the continuous model
(Fig. 4). However, there is no a priori reason to favor a continuous over
a discrete time formulation because what is regarded as an event at one
time scale is actually a process at another time scale (e.g., see Getz and
Schreiber, 1999 in the context of consumer–resource processes). Fur-
ther discrete-time formulations are particularly convenient when the
data come in discrete packets (e.g., disease class transitions or the oc-
currence of deaths are recorded daily or weekly, etc.) rather than a
collection of events marked according to the flow of continuous time.
Finally, stochastic approaches are needed to capture the full richness of
epidemiological dynamics (Allen, 2017; Britton, 2010; Getz et al.,
2015) and, as discussed below, it is far easier to make discrete-time
models stochastic than continuous-time models.

To complete this discrete model, we have the discrete analogues of
the continuous live and dead population variables:

N t S t E t I t V t
D t p I t

M t M t M t M t M t

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
α γ μ

S E I V
|

= + + +
=

= + + +
+

(13)

where

M t p S t

M t p E t

M t p I t

M t p V t

( ) ( )

( ) ( )

( ) ( )

( ) ( )

S
μ τ

E
μ σ

I
μ γ α

V
μ ν

|

|

|

|

t=

=

=

=
+

(14)

2.4. Discrete stochastic SEIVD models

Before presenting a stochastic formulation of Eqs. (12)–(14), it is
worth noting that one can simulate continuous systems models, such as
Eqs. (1)–(4), as a stochastic process of randomly occurring events using
Gillespie's algorithm (Gillespie, 1976, 1977) and its refinements

Fig. 3. The prevalence I(t) is plotted over time (A – t∈ [0, 50], B – t∈ [0, 1000])
using the Numerus Model Builder implementation, depicted in Fig. 2, to gen-
erate numerical solutions to Eq. (2) under initial conditions S(0)= 999, E
(0)= 0, I(0)= 1, and V=0 for the case μ=0.01, α=0.05, σ= γ=0.3, under
the assumption that λ(t)= μN(t). In addition: in (A) ν=0 and β varies from
0.35 to 0.40 (in steps of 0.01); and in (B) β=1 and ν=0.02 (red) and ν=0
(blue). See Video 3 at the supporting website for details on making sets of batch
runs using Numerus Model Builder.

Fig. 4. The prevalence I(t) is plotted over time t∈ [0, 210] for the continuous
(red) and discrete (blue) Numerus Model Builder coding of SEIVD models re-
presented by Eqs. (2) and (12) respectively for the case τ(t)= βS(t)/N(t) and
λ(t)= μN(t) using the parameter values β=1, α=0.05, σ= γ=0.3, and
ν=0. In the discrete model we note that Λt=M(t) and τ(t) is assumed constant
over [t, t+1). The numerical solutions depicted here correspond to initial
conditions S(0)= 999, E(0)= 0, I(0)= 1, and V=0. See Video 4 at the sup-
porting website for additional details on building the discrete model using
Numerus Model Builder.
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(Gibson and Bruck, 2000; Press et al., 2007; Vestergaard and Génois,
2015). This general, event-oriented approach, however, involves con-
siderably more computations invoking numerical integration schemes
than working directly with discrete models. Further, as we stressed
earlier on, a continuous-time model is theoretically no more privileged
than its analogous discretized formulation that has its iteration interval
synchronized with the frequency at which the data are collected.

In developing a stochastic formulation we use the notation

X n p: BINOMIAL[ , ]=∼

to denote that X∼ is one drawing of a binomial variable representing the
number of times one of two outcomes occurs in n independent trials,
when the probability of this outcome occurring in a single trial is p (i.e.,
a Bernoulli process with probability p). More generally, we use the
notation X X( , , )r1 …∼ ∼ to denote one instance or one particular drawing of
(x1, …, xr)∼MULTINOMIAL[n;p1, …, pr], where Xi

∼ is the number of
times one of r possible outcomes occurs over n trials, each have prob-
ability pi (i=1, …, r) of occurring in any one trial.

With this notation, we can write down equations for the stochastic
equivalent of the discrete deterministic model represented by Eq. (12).
We use the additional notation U∼ with appropriate designator sub-
scripts to denote the number of individuals transferring between dis-
ease classes:

( )

( )

( )

( )

S t U t M t S t p p

p

E t U t M t E t p p

p

I t U t M t D t I t p

p p p

V t U t M t V t p p

p

( ), ( ), ( ) : MULTINOMIAL[ ( ); 1 , ,

]

( ), ( ), ( ) : MULTINOMIAL[ ( ); 1 , ,

]

( ), ( ), ( ), ( ) : MULTINOMIAL[ ( ); 1 ,

, , ]

( ), ( ), ( ) : MULTINOMIAL[ ( ); 1 , ,

]

͠

͠
τ μ τ μ

μ τ

σ μ σ μ

μ σ

γ α μ

μ α μ γ α μ α γ μ

ν μ μ ν

ν μ

S S
|

|
E E

|

|
I I

| | |
V V

|

|

t t

t

= −

= −

= −

= −

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

+

+

+ +

+ + +

+

(15)

The stochastic version of our discrete SEIVD model is thus re-
presented by the following equations:

S t S t Λ U t

E t E t U t

I t I t U t

V t V t U t

( 1) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )

͠

͠ t
V

S

E

I

+ = + +

+ = +

+ = +

+ = +

∼

∼

∼

∼

∼

∼

∼

(16)

where Λt
∼ are generated from an appropriate discrete distribution, such

as a Poisson distribution with expected value Λt determined from local
population birth rates or other relevant recruitment processes. We note
that the term U t( )S∼ is the proportion derived for the transmission-
driven transition τt, and hence typically depends on the variable
number of infectious individuals in the population at the start of each
time step, while the other transitions U t( )X∼ , X=E, I and R, are pro-
portions derived from typically constant flow rates σ, γ and ν.

To complete this stochastic discrete model represented by Eqs. (15)
and (16), we have

M t M t M t M t M t( ) ( ) ( ) ( ) ( )S E I V= + + +∼ ∼ ∼ ∼ ∼
(17)

as well as N(t) in Eq. (13), which is needed to calculate τt= τ(I(t), N(t))
using an appropriate expression, such as given in Eq. (1) (Fig. 5).

2.5. Weakness of the SEIVD formulation

Real epidemics are far more complicated than the idealized epi-
demics encapsulated in the above SEIVD models. Among assumptions
in SEIVD models used to keep them relatively simple are:

1 The assumption of host homogeneity. This assumption is tenuous at
best: the host's age (Klepac and Caswell, 2011), sex (Bellan et al.,
2013), genetic makeup (particularly MHC locus genes) (Hill et al.,
1991), physiological state (Lyte, 2004), and history of exposure to
the current and related pathogens (the latter due to cross-immunity
issues (Kurts et al., 2010)) all play a role in affecting the vulner-
ability of the host to infection, the length of time the host is in-
fectious, and the risk of the host dying from disease. For a variety of
reasons that include behavior, physiology, and genetics, some in-
dividuals are also much more infectious than others. These in-
dividuals are sometimes referred to as superspreaders and it is well-
known and that in some epidemics fewer than 20% of infected in-
dividuals may be responsible for more than 80% of transmission
events (Lloyd-Smith et al., 2005b).

2 The assumption of a well-mixed population. This is related to the as-
sumption that hosts contact one another at random. Contact is never
random. At best, contact can be assumed to be locally random. This
implies that the probability individuals contact one another over
some future period is inversely related to their current distance from
one another. One way around this assumption is to extend SEIVD
models to a metapopulation setting in which subpopulations are
regarded as well-mixed and rates of exchange of individuals among
subpopulations is some inverse function of the distance among the
centers of these subpopulations, as discussed in Section 3 below.

3 The assumption that the transmission rate per susceptible individual is a
relatively simple function of host population and infectious class densities
(or numbers). For example, Eq. (1) assumes that total transmission
has a frequency dependent form. A more general case that assumes
transmission is essentially (i) density dependent when population
density N is small relative to some function-location parameter L,
and (ii) frequency dependent when the population is much larger
than L, takes the form

τ I N
βI

N L
( , ) =

+

More complicated functions have been proposed (McCallum et al.,
2001; Getz and Lloyd-Smith, 2006), including a negative binomial
expression that accounts for susceptible host aggregation (Merl
et al., 2009) or the phenomenon of superspreaders (Lloyd-Smith
et al., 2005b), however, they are also limited in adhering to the
following assumption.

4 The assumption that individuals exit disease states following exponential
(continuous time) or geometric (discrete time) distributions. We see this
clearly in Eq. (8) in the context of infectious individuals in the
continuous time model over a single time period, which leads to the
geometric rate of decay when applied iteratively over several time
periods. This rather severe assumption (which implies that the
highest exit proportions occur closest to entry into the disease
class—or put another way, the mode of the exit distribution is at the
point of entry into the given disease class) can be obviated using a
box-car model or distributed-delay approach. In these formulations,
infected individuals pass through disease class E by passing through
a sequence of disease subclasses E1, E2,…, Er, before passing into the
disease subclass sequence I1, I2,…, Ik, and then finally into disease
class V (Clancy, 2014; Leclerc et al., 2014; Blythe and Anderson,
1988; Bame et al., 2008; Anderson and Watson, 1980). In this case,
the exit distributions from E and I are no longer exponential, but are
now Erlang (i.e., a subclass of the Gamma distribution). Further, the
mode of the Erlang distribution becomes increasingly peaked and
approaches the mean as the number of subclasses increases. This
assumption can also be obviated by using a discrete time model that
tracks the number of days each individual has been in a particular
disease state, as seen for example in a model of the 2003 Asian
outbreak of SARS (Lloyd-Smith et al., 2003).

5 The assumption that the transmission rate parameter is time independent.
Apart from seasonal considerations, it is often assumed the
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transmission parameter β in assumption 3 is constant. The primary
reasons why epidemics subside, however, are that either the pro-
portion of susceptible individuals in the population is reduced to the
point where the epidemic can no longer be sustained (so-called
threshold effect (Getz and Pickering, 1983; Lloyd-Smith et al.,
2005a)) or the rate at which susceptible individuals contact in-
fectious individual during the course of an epidemic, as in the recent
Ebola outbreak in West Africa (Getz et al., 2015; Camacho et al.,
2014), precipitously falls due to behavioral reasons as the epidemic
proceeds. One approach is to assume that β has the exponential form
β(t)= β0e−εt (e.g. as in Althaus, 2014). This is a little extreme be-
cause we should not expect β not to start to decline precipitously at
the start of the epidemic, but only part way into the epidemic, once
public awareness of the full potential of the epidemic has become
apparent. In this case, a mirror-image, s-shaped curve of the form

( )
β t

β
( )

1 t
t

ε
0

c

=
+ (18)

for parameters tc > 0 and ε > 1 is more appropriate (in a manner
analogous to the onset of density-dependence, as discussed in Getz
(1996)).

6 The assumption that pathogen dose can be ignored. The human immune
system is extremely complex and takes a variable amount of time to
gear up once invaded by a replicating army of pathogens, as the
gear-up time depends on the condition of the host, host genetics,
and prior host experience with the same and other pathogens. Small

pathogen armies (i.e., low doses) are more easily contained by the
hosts immune system—that is, before they can replicate to reach
levels that may overwhelm and kill the host—than high doses or
repeated exposure to lower doses over a short window of time. Such
host-immune-system/pathogen dynamics can only be understood
using models that are often more complicated than the SEIVD model
itself (Perelson and Weisbuch, 1997; Bauer et al., 2009). Further,
ignoring both single and repeated dose effects may severely com-
promise the reliability and transferability of SEIVD models fitted to
one population and then applied to another population or even to
the same population at a later date.

3. Metapopulation formulation

The first step in extending homogeneous SEIVD models to a meta-
population setting is to prepare the homogeneous models by embedding
them in a background population through the addition of migration
processes (Fig. 6A). For example, for the ith subpopulation we can add
local per-capita emigration rates qi

X to Eq. (2) for X=S, E, I, and R, to
account for individuals that move in and out of the four different dis-
ease classes. If we do this for all subpopulations using a set of sub-
population emigration rates qi

X, i=1, …, m, we can then also generate
a set of immigration rates hi

X that conserves total movement numbers
within the metapopulation. In this case, we need to define a movement
matrix with elements πij

X such that

Fig. 5. The top left panel provides a Numerus Model Builder representation of the discrete stochastic model with the stochastic chip (Stochastic_0) at its center. This
chip contains the code (right top panel) for generating the multinomial distributions seen in Eq. (15). The bottom panel illustrates plots of prevalence from five
repeated runs of the stochastic model using the identical set of parameters in each run. See Video 5 at the supporting website for more details.
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h t π q X t( ) ( ),i
j

m

j j
X

1
ji
X X∑=

= (19)

where π 1j
m

1 ij
X∑ == for i=1, …, m and X= S, E, I, and V. We can then

add this migration process to Eq. (2), applied to the ith subpopulation in
the metapopulation network, to obtain:

h λ t ν R

τ I N μ q S

h τ I N S σ μ q E

h σ E γ α μ q I

h γ I ν μ q V

( )

( ( , ) )

( , ) ( )

( )

( )

i i i i

i i i i i i

i i i i i i i i i

i i i i i i i i

i i i i i i i

dS
dt

S

S

dE
dt

E E

dI
dt

I I

dV
dt

V V

i

i

i

i

= + +

− + +

= + − + +

= + − + + +

= + − + + (20)

We can further assume that the movement elements πji(t) are de-
rived from a set of connectivity strengths κji(t) that reflect the relative
ease with which an individual in subpopulation j can move (in this case
flow because time is continuous) to subpopulation i over the time in-
terval [t, t+1) and a set of relative attractivity values ai(t) that are
characteristics of the nodes i. These attractivity values ai(t) are assumed
to bias the movement of any individual leaving subpopulation j to move
to subpopulation i with probabilities computed using the formula:

π t
κ a t

κ a t
( )

( )
( )

i

r
m

r
j i

j i

1 jr
=

∑ = (21)

We further note that we allow κj i≠ κi j to hold in general, though if κji
are constructed using a symmetric distance matrix with elements εj i

such that

κ e δε
j i j i= −

for some scaling constant δ > 0, then the relation κi j= κj i will hold.
The attractivity factor ai(t) could reflect several different aspects of the
subpopulations, including their size, proportion of infected or immune
individuals in the subpopulation, and so on. We will assume that two
factors play a central role in determining the relative attractivity of
each subpopulation: a characteristic size parameter Ni

c and the ratio of
infectious individuals Ii(t)/Ni(t) for the ith population, i=1, …, m. For
example, we might assume attractivity falls off linearly from 1 to 0 with
the ratio Ii/Ni (i.e., use the factor (1− Ii/Ni)). Similarly, we might as-
sume that the attractivity falls off as N(t)∈ [0, ∞) varies on either side
of Ni

c (e.g. a factor of the form e N N e(1/ )( / )i
c N N/ i− which ranges between

0 and 1 and back to 0 as N increases from 0 to Ni
c and then beyond to

infinity). In this case we may define

a t k I t
N t

k N t e( ) 1 ( )
( )

(1 ) ( )
eNi

i

i

i

i
c

N t N( )/i i
c

⎜ ⎟⎜ ⎟= ⎛
⎝

− ⎞
⎠

+ − ⎛
⎝

⎞
⎠

−

where k∈ [0, 1] switches the emphasis from the population size factor
to the prevalence factor as k increases in value from 0 to 1.

The inputs h t( )i
X and per-capita flow rate outputs qi

X (X= S, E, I and
V) for the focal ith subpopulation, can either be 0, constants, or gen-
erated using probability distributions in stochastic versions of the
model. The inputs will, of course, depend on the density or number of
individuals available in the environment surrounding the focal sub-
population i, with population structure taken into account using net-
work or nearest neighbor concepts. In the context of discrete determi-
nistic or stochastic models, we need to account for the per-capita flow
rate outputs qX in our competing rates formulations to obtain the

Fig. 6. (A) A homogeneous subpopulation with input and output flows of individuals to and from other subpopulations in the metapopulation (cf. Fig. 1A). (B) The
flow network quantities and governing equation for the metapopulation as a whole. (C) The Numerus Model Builder (NMB) submodel of the subpopulation processes
depicted in A, which is basically the NMB model illustrated in Fig. 2 with input and output pins added as described in Video 6 at the supporting website. (D) The NMB
metapopulation model formulated one hierarchical level above the subpopulation model depicted in C, with the use of the NetSEIV, Migration and Metapop
codechips explained in Video 7 at the supporting website. The NodePop codechip connected to the yellow “save” event container allows the one-time event of saving
trajectories of all variables from all nodes at the end of the simulation.
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extended probability for the case of rates assumed to be constant over
each interval of time (though the rates themselves can vary from one
time interval to the next). In this case, we augment the proportions/
probabilities in Eq. (10) to define the following terms for constructing
the infectious class equation in the ith subpopulation

p γ P

p α P

p μ P

p q P

γ α μ q i i

α γ μ q i i

μ γ α q i i

q γ α μ i i

|
I

|
I

|
I

|
I I

i i i i

i i i i

i i i i

i i i i

I

I

I

I

≡

≡

≡

≡

+ +

+ +

+ +

+ + (22)

where

( )P
e

γ α μ q
1

i

γ α μ q

i i i i

I
( )

I

i i i i
I

≡
−
+ + +

− + + +

(23)

and, as before, it follows that

p e
p p

p p

(1 )γ α μ q
γ α μ q

γ α μ q α γ μ q

μ γ α q q γ α μ

( )

| |

| |

i i i i
i i i i

i i i i i i i i

i i i i i i i i

I
I

I I

I I

≡ −
= +

+ +

+ + +
− + + +

+ + + +

+ + + +

with similar expressions following for the susceptible, the exposed and
the immune classes expressed in terms of Pi

X, X= S, E, I, and V fol-
lowing the patterns of Eqs. (22) and (23)

These expressions can be used to write down an extended version of
the deterministic discrete model given by system of Eq. (12) or of the
stochastic model given by system of Eqs. (15) and (16). By way of il-
lustration, using Q X∼ to represent the proportion of individuals leaving
class X= S, E, I, and V due to immigration, Eq. (15) now become
(dropping the argument in t and the subscript i)

( )

( )

( )

( )

S U M Q S p p

p p

E U M M E p p

p p

I U D M Q I p

p p p p

V U M Q V p p

p p

, , , : MULTINOMIAL[ ; 1 , ,

, ]

, , , : MULTINOMIAL[ ; 1 , ,

, ]

, , , , : MULTINOMIAL[ ; 1 ,

, , , ]

, , , : MULTINOMIAL[ ; 1 , ,

, ]

͠

͠
τ μ q τ μ q

μ τ q q τ μ

σ μ q σ μ q

μ σ q q σ μ

γ α μ q

γ α μ q α γ μ q μ γ α q q γ α μ

ν μ q ν μ q

μ ν q q ν μ

S S S
|

| |
E E E

|

| |
I I I

| | | |
V V V

|

| |

͠

͠ ͠ ͠ ͠

͠ ͠

͠ ͠

t t

t t

S S

S S

E E

E E

I

I I E I

V V

V V

= −

= −

= −

= −

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼ ∼

∼

∼

+ + +

+ +

+ + +

+ +

+ + +

+ + + + + + + +

+ + +

+ +

(24)

Recall that the only source for individuals immigrating to a sub-
population during the interval [t, t+1) are those emigrating from all of
the other subpopulations. Given this, as in setting up Eqs. (19) and (21),
we can now express the emigrants H t( )i

X (i=1, …, m) in terms of the
immigrants Q t( )j

X∼ (j=1, …, m, for each X=S, E, I, or R), and the
parameters πji:

H t h t( ) ( ), X S, E, I, and V͠
j

i

m
X

1
i j
X∑= =∼

=

where the individual h t( )͠
i j
X

are generated from the drawings

h t h t Q t π t π t( ( ), , ( )) MULTINOMIAL[ ( ); ( ), , ( )]͠ ͠
j j j1
X

m j
X X

1 jm… = …∼
(25)

With this process completed, we then obtain the following extended
version of Eq. (16)

S t S t Λ t H t U t

E t E t H t U t

I t I t H t U t

( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )͠

͠i i i i i

i i i i

i i i i

S V

E S

I E

+ = + + +

+ = + +

+ = + +

∼

∼

∼

∼

∼ ∼

∼

∼
(26)

The recruitment numbers Λ t( )i
∼ , generated during each interval (t,

t+1], are drawn from an appropriate discrete stochastic process. The
simplest is a Poisson process with expected value Λt, where the latter is
determined by local population birth rates or other processes gen-
erating new individuals. Illustrative simulations of the metapopulation
model depicted in Fig. 6 for the case of 6 locations strung out in a row,
where individuals can only move between neighboring locations are
provided in Fig. 7.

4. Fitting models to data

Methods for fitting epidemiological and other types of dynamical
systems models to data is a vast area of research in its own right. Here
we only touch the surface of the topic and discuss how Numerus Model
Builder can be used to address the issue under relatively straightfor-
ward and manageable situations (i.e., not too many equations and with
a few parameters at most free to vary during the fitting procedure). A
gentle introduction to the field of fitting population models to data is
provided by Hilborn and Mangel (Hilborn and Mangel, 1997). The issue
of model selection itself (Burnham and Anderson, 2003; Johnson and
Omland, 2004)—i.e., fitting models with different numbers of para-
meters to data based on information theoretic concepts—is beyond the
scope of our presentation.

Briefly, fitting dynamic models to a set of observations Y={Y1, …,
Yn}, where the index i in Yi refers to time t= i, i=1, …, n, typically
involves generating a set of comparable values θ θ θy yy( ˆ) { ( ˆ), , ( ˆ)}n1= …
from a model that has a set of m parameters θ={θ1, …, θm}, where

θy ( ˆ)i is the value of some variable in the model at time t= i when the
parameter values are θ θ̂= .

The two dominant approaches to fitting models to data are least-
squares estimation (LSE), which is equivalent to maximum likelihood
estimation (MLE) (Myung, 2003) when errors are normal or

Fig. 7. Prevalence plots predicted by a continuous-time deterministic metapo-
pulation model when the index case starts out in one of six possible locations
(each with S(0)= 20, 000 and other classes at 0, except for the location that has
I(0)= 1 and S(0)= 19, 999), where the locations numbered from 0 to 5 are
strung out in a straight line in the order 0, 1, 2, 3, 4, 5, and individuals flow
only to subpopulations that are their immediate neighbors. Subpopulation
prevalence rates are plotted in (A) (index case in subpopulation 0) and (B)
(index case in subpopulation 2) with the subpopulation containing the index
case clearly leading the outbreaks in closest and the next closest neighboring
populations (note that one of the curves is completely obscured by another).
Total prevalence is plotted in (C) for outbreaks with two index cases that are
either the end two (red plot) or center two (blue plot) subpopulations.
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asymptotically approaches MLE when sample sizes are very large. The
latter is typically embedded in a Markov Chain Monte Carlo (MCMC)
algorithm that constructs a probability distribution for θ using Bayes
theorem (Roberts et al., 2004; Lele et al., 2007; Choi and Rempala,
2011; Ionides et al., 2006). MCMC requires the likelihood function to be
known. This can be obviated, though, by assuming the distribution of
model outcomes to be Poisson (as we do below), using likelihood-
function-free methods (Marjoram et al., 2003), or using approximate
Bayesian approaches (Beaumont, 2010).

LSE methods involve minimizing the sum-of-squares residuals (or
error) measure

� θ θy Y( ˆ) ( ( ˆ) )
i

m

i iSS
1

2∑= −
= (27)

On the other hand, MLE methods that assume model outcomes are
Poisson, but with a different Poisson mean θy ( ˆ)i for each data point Yi,
i=1, …, t, involves maximizing the log-likelihood function

� θ
θ

Y
y e

Y
ln ( | ˆ) ln

( ˆ)
!

θ

i

t
i

Y y

i1

( ˆ)i i
∑= ⎛

⎝
⎜

⎞

⎠
⎟

=

−

or minimizing its negative, which can be written for θy yˆ ( ˆ)i i= as

� θY y Y Y yln ( | ˆ) ( ˆ ln( !) ln ˆ )
i

t

i i i i
1

∑− = + −
= (28)

Here, for purposes of illustration, we fit our deterministic SEIV
model to the Sierra Leone Ebola weekly incidence data (Backer and
Wallinga, 2016) using both LSE and MLE approaches (Fig. 8: cf. fits
obtained in Althaus, 2014). When fitting such data the appropriate
initial conditions are generally uncertain because detection of the pu-
tative index case does not generally pin down the start of the epidemic:
the actual index case may often go undetected and the number of in-
dividuals in class E at the time of the first case is also unknown. Thus, as

part of the fitting procedure, we allow the initial values E(0), I(0) in the
model to be fitted to the data. To keep the dimensions of the fitting
problem down, however, we set

E I Z(0) (0)= =

and the search for the best fitting value of Z.
Another imponderable is the actual number of individuals N(0) at risk

at the start of the epidemic. Thus we also treat N(0)=N0 to be an opti-
mization parameter, though we set V(0)=0 under the assumption that if
some individuals in the population were immune to Ebola at the start of
the epidemic, this would be reflected in a lower-valued estimate of N0.
Thus, paralleling others who have fitted models using a parameter that
represents the proportion of the population at risk (Eisenberg et al., 2015),
N0 should be interpreted as the “initial population at risk” rather than
actual population size. Also, in preliminary runs of our optimization using
a Nelder–Mead algorithm, the difference between optimal values for σ and
γ under variety of settings always lead to optimal values that differ by less
than a few percent. Thus to further reduce the dimension of the optimi-
zation problem, we set σ= γ during the optimization procedure. Further,
we also fixed μ and γ (which in problems like this can be estimated outside
of the incidence data) to 0.001 and 0.05 (which here are rates per week)
respectively, as well as setting λ= ν=0. A more rigorous fitting of the
Sierra Leone data would need these parameters to be properly estimated
ahead of time, but our purpose here is to demonstrate different aspects of
the fitting procedure, rather than undertaking an in depth analysis of the
epidemic itself.

With the above parameter and model settings, the best-fitting re-
maining parameter values, denoted by asterisk, were

LSE:

N E I σ γ( *, * *, * *) (409387, 6.3, 0.43)0 0 0= = =

( )
β t* ( ) 1.70

1 t
18.1

2.56=
+

MLE:

N E I σ γ( *, * *, * *) (477435, 19.7, 0.37)0 0 0= = =

( )
β t* ( ) 1.49

1 t
16.8

2.24=
+

In Fig. 8A we see that the LSE and MLE provide similar fits, though
both provided relatively poor fits to the first third of data: these data
reflect a more linear than the exponential initial phase which is un-
characteristic of homogeneous SEIVD models, particular those that
have no spatial structure. In general, we should not expect an SEIVD
model to fit the data particularly well because many of the assumptions
inherent in the SEIVD model, as discussed in the previous section, are
violated to some often-unknown and likely-large degree.

Though the fits are similar—both, for example predict an initial β
around 1.5 that drops to half that level in just over two weeks after the first
cases have been detected—the LSE fit predicts an 14% smaller initial
population at risk than the MLE fit. Thus the errors associated with this
estimation can be quite large. These errors can be estimated using other
methods such as Bayesian Markov Chain Monte Carlo (MCMC) estimation.
Further, as is evident from our plots in Fig. 8B, if we use the first T weeks
of data, T=10, 20, 30, and 40, to fit the model, we see that fitting the first
10 weeks (red curve) greatly overestimates the final size of the epidemic,
while fitting the first 20 weeks somewhat underestimates the final number
of cases. Before leaving this example, we note that in several runs of the
optimization algorithm, different starting conditions converged to dif-
ferent solutions, thereby indicating that some of these solutions are local
rather than global minima. When this happened, we selected the solution
that gave the lowest log-likelihood value, but our searches were not suf-
ficiently exhaustive for us to be sure that we had found the global
minimum for each case.

Fig. 8. The SEIVD discrete time model given by Eq. (12) with fixed parameters
ν=0, μ=0.001, α=0.05 and Λt=0 (cf. Fig. 4) has been fitted to Ebola data
from the Sierra Leone 2014 outbreak in which more than 10,000 cases occurred
during the course of an approximately one-year period (Backer and Wallinga,
2016). A. The blue and red curves are the best fit LSE (see Eq. (27)) and MLE
(see Eq. (28)) obtained with the optimal parameter sets given in the text. B. The
black dotted line is the MLE fit, as in Panel A, with the red, orange, purple and
blue plots, simulations obtained after obtaining the best MLE fits to the first 10,
20, 30 and 40 weeks of incidence respectively. See Video 9 at the supporting
website for more information on how to set up and run optimizations on this
model using Numerus Model Builder.
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5. Discussion and conclusion

What is the value of building SEIVD models in anticipation of,
during, or after an epidemic outbreak, given the level of accuracy that
can be expected from such models? As with all models of complex
biological systems centered around organisms, populations or com-
munities, the answer is the same: models provide a framework for ob-
taining insights into dynamic population processes that could not be
obtained without them. Further, they provide a means for exploring and
assessing the efficacy of interventions and other types of management
actions designed to protect, conserve, or exploit the populations under
consideration. In the context of epidemics this has certainly been true
with regard to implementing vaccination (Dasbach et al., 2006;
Edmunds et al., 1999; Getz et al., 2015) and quarantine programs
(Bauch et al., 2005), assessing the effects of behavior (Funk et al.,
2010), case detection (Dye and Gay, 2003), and treatment rates
(Castillo-Chavez and Song, 2004; Salomon et al., 2006), managing the
logistics of setting up treatment facilities during the course of epi-
demics, evaluating the efficacy of educational (Hadeler and Castillo-
Chávez, 1995) and prophylactic campaigns (Williams et al., 2006), as
well as drug-delivery programs that reduce the risk of producing drug-
resistance pathogen strains (Blower and Chou, 2004).

Models are also the best tools for guiding our response to an out-
break once it has begun. Although, after 10 weeks, a fit to the Sierra
Leone data set would have substantially underestimated the problem at
hand, the fit at 20 weeks provided a much better ball park assessment of
the final size of the Sierra Leone outbreak. This remained somewhat
true at 30 weeks and certainly so at 40 weeks, despite all the known
serious violations of an SEIVD model applied to an inhomogeneous,
spatially-structured population. Thus SEIVD models remain an im-
portant tool for managing epidemics, provided we treat predictions
from such models with circumspection. To this end, Numerus Model
Builder provides a tool that allows non-expert coders to explore the
behavior and response-to-interventions of SEIVD-elaborated systems in
ways previously open only to those trained to code models themselves.
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